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TACLE: TAsk and CLass-awarE Exemplar-free Semi-supervised Class Incremental Learning

Class Incremental Learning Scenarios

• The ability to learn from continuously evolving data is important for many real-world applications.

• In class incremental learning, the model updates its knowledge continuously when a new set of 

classes becomes available.

• In Semi-supervised CIL, the model updates using both labeled and unlabeled data at each task.
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3. Semi-Supervised CIL (SS-CIL): Online Replay
with Discriminator Consistency (ORDisCo) [53] is a
pioneering work addressing SS-CIL, focusing on in-
terdependently learning a classifier with a conditional
Generative Adversarial Network (GAN). This approach
involves the continual transmission of the learned data
distributions to the classifier. However, the method incurs
prohibitive costs when applied to higher-resolution im-
ages like ImageNet-100. Boschinia et al. [6] introduced
Contrastive Continual Interpolation Consistency (CCIC)
for this task, combining the advantages of rehearsal based
methods with consistency regularization and distance-based
constraints. In ESPN [30], outliers are introduced in the
unlabeled data to enhance the realism of the problem. More
recently, NNCSL [32] proposed a soft nearest-neighbor
framework to learn powerful and stable representations. In
contrast, the proposed TACLE framework leverages pre-
trained models [63] to enhance representations, thereby
eliminating the need for exemplars.

3. Problem Formulation

We now formally define the problem of Semi-Supervised
Class Incremental Learning (SS-CIL) and introduce rele-
vant notations used throughout the paper. In CIL, the model
is trained on total T sequential data streams (or tasks)
denoted by {D

(1),D(2), . . . ,D(T )
}, each with its corre-

sponding class label set denoted by {C
(1), C(2), . . . , C(T )

}.
Throughout this training process, the number of parame-
ters in the feature extractor {⇥} remains unchanged. How-
ever, new classifiers { (1), (2), . . . , (T )

} are incremen-
tally added after training each task. In traditional CIL, at
task t, the model have access to large amount of labeled data
D

(t), where t = 1, . . . , T , along with old task exemplars.

In contrast, in SS-CIL, the data for the present task t
consists of both labeled and unlabeled samples i.e D

(t)
2

{D
(t)
l [D

(t)
ul }. Here, it is assumed that both labeled and un-

labeled samples come from classes (C(t)) in the same task,
and the number of labeled samples is significantly smaller
compared to that of unlabeled data i.e., |D(t)

l | << |D
(t)
ul |.

Once the model {⇥, (1:t)
} has learnt from the current task

data D(t), it has to perform well on all the classes seen so far
i.e {C(1:t)

}. Throughout SS-CIL, the model learns one base
task and a total of T �1 tasks in an incremental fashion, with
no overlap in the label space between the different tasks, i.e.
C(i)

\C(j) = � for (i 6= j). In the SS-CIL protocol, an ex-
emplar bank E will be updated after each task to alleviate
catastrophic forgetting. However, in EFSS-CIL, there are
no exemplars saved for future tasks (because of privacy or
storage costs), which makes the problem addressed in this
work more challenging and realistic.

Figure 2. Illustrates the Average Confidence Score (ACS) for un-
labeled data across tasks. The ACS is calculated by taking average
of maximum probability confidence scores from all the unlabeled
data, at the end of training. The observed decaying trend indicates
that using a fixed high threshold in SS-CIL may not be suitable for
effective utilization of unlabeled data in feature learning. Due to
the fixed threshold, the amount of unlabeled data utilized for train-
ing is significantly reduced as tasks progresses.

4. Proposed Method

Now, we describe in detail, our proposed TACLE (TAsk
and CLass-awarE) framework, designed specifically for
EFSS-CIL. As discussed earlier, we have access to both la-
beled data D

(t)
l = {xl

i, y
l
i}

N(t)
l

i=1 and unlabeled data D
(t)
ul =

{xul
i }

N(t)
ul

i=1 , for task t. Here, N (t)
l , N (t)

ul are the number of
labeled and unlabeled samples, respectively. The TACLE
framework adopts a two-stage training strategy for each
task, namely (i) stage 1: Feature Representation Learn-
ing: This stage leverages both labeled and unlabeled data to
learn robust feature representations and (ii) stage 2: Classi-
fier Alignment: This stage focuses on aligning the classifiers
with the learned features from both labeled and unlabeled
data. At each task t, the model is trained by utilizing la-
beled data D

(t)
l through standard supervised cross entropy

loss:
Ls(x

l
i, y

l
i) = H(pli, y

l
i) (1)

where xl
i is the labeled sample and pli =  (t)(⇥(xl

i)) is
the predicted probability distribution given by the model for
task t; H represents the standard cross-entropy loss. Now,
we describe the different proposed modules to effectively
utilize the available unlabeled data at current task.

4.1. Stage 1: Learning Feature Representations

Task-wise adaptive threshold: To leverage maximum in-
formation from unlabeled data, we draw inspiration from
SSL framework FixMatch [49], where, unlabeled data con-
tributes to the learning process if the model’s confidence
surpasses the predefined threshold � (typically set to 0.95).
In the EFSS-CIL setting, a fixed threshold across tasks may
not be effective, since the number of classes increases with
each task, thereby impacting the confidence scores of the
unlabeled data.

To analyze the confidence scores across tasks, we plot
the Average Confidence Score (ACS) of the unlabeled data

(ii). Task-wise threshold loss for UnSupervised data: 

Figure 3. The proposed TACLE framework has two components in stage 1 training at task t: C1. Task-wise adaptive threshold (�(t)
a ) is

employed in the computation of the unsupervised loss Lus. C2. Class-aware weights are utilized in the computation of both supervised
and unsupervised losses, where the weights are determined based on the class-wise distribution of pseudo-unlabeled data.

for CIFAR10 and CIFAR100 datasets after each task in
Fig. 2. The exact task splits are discussed in the experimen-
tal section. For ACS calculation, after training each task,
we pass the respective task’s unlabeled data through the
model and calculate the average of their confidence scores,
which provides insight into the average maximum confi-
dence of the unlabeled data. Empirically, we observe that
the ACS value reduces as the tasks progress. As the number
of classes increase with more tasks, it induces more confu-
sion in the model predictions, thereby reducing the confi-
dence value on the unlabeled data. To address this issue, we
propose a task-wise adaptive threshold instead of a fixed
threshold to effectively leverage the unlabeled data avail-
able at task t.

We denote a given unlabeled sample and its augmenta-
tion as xul

i , x̂ul
i , and their respective prediction probabilities

as puli , p̂uli . The unsupervised loss, that incorporates a task-
wise adaptive threshold is calculated as

Lus(x
ul
i ) = I(max(puli ) > �(t)

a ) · H(p̂uli , argmax(puli ))
(2)

Here, I is an indicator function which is 1 if the maximum
value of model output probability puli surpasses this adap-
tive threshold �(t)

a , otherwise, the loss is 0. The task-wise
adaptive threshold, �(t)

a is inspired from the inverse sigmoid
function [17, 40], and here we adapt it for the EFSS-CIL
task as follows:

�(t)
a =

↵

1 + e↵t
+ �, (3)

We observe that the dynamic threshold computed using
the above equation decreases as the task index t increases,

which aligns with the inverse sigmoid behavior. The
hyper-parameters ↵ and � provide flexibility in controlling
the rate of threshold reduction. This dynamic adjustment
ensures an effective utilization of unlabeled data in the
feature learning process, allowing the model to better adapt
to different tasks. In all our experiments, across all datasets,
we use ↵ = 0.5, � = 0.65. Further analyses of these
choices and dynamic threshold behavior plots across tasks
are provided in the supplementary material.

Class-aware weighted loss: While the task-wise adaptive
threshold helps to learn better feature representations from
unlabeled data across tasks, even within a task, there is
significant class imbalance among samples surpassing the
task-wise adaptive threshold. This imbalance can bias the
model training towards classes with more pseudo-labels,
hindering the performance on under-represented classes. To
mitigate this, inspired from the SSL works [15, 62], we
propose a very simple, yet effective class-aware weighted
cross-entropy loss.

At task t, after each epoch during stage 1, we calcu-
late the normalized histogram of confident unlabeled sam-
ples across different classes. This histogram, represented
as a vector ⇣ 2 R|C(t)|, serves as the basis for the class-
aware weighted distribution ⇣̄ used in the weighted cross-
entropy loss calculation. The class-aware weighted dis-
tribution ⇣̄ is calculated as ⇣̄ = 2 � ⇣, which ensures
that the class having maximum number of confident unla-
beled samples in histogram ⇣ has ⇣̄ = 1, and class with
least confident unlabeled samples has ⇣̄ = 2 (1  ⇣̄ 

(iii). Inverse Sigmoid Function: 

Figure 3. The proposed TACLE framework has two components in stage 1 training at task t: C1. Task-wise adaptive threshold (�(t)
a ) is

employed in the computation of the unsupervised loss Lus. C2. Class-aware weights are utilized in the computation of both supervised
and unsupervised losses, where the weights are determined based on the class-wise distribution of pseudo-unlabeled data.

for CIFAR10 and CIFAR100 datasets after each task in
Fig. 2. The exact task splits are discussed in the experimen-
tal section. For ACS calculation, after training each task,
we pass the respective task’s unlabeled data through the
model and calculate the average of their confidence scores,
which provides insight into the average maximum confi-
dence of the unlabeled data. Empirically, we observe that
the ACS value reduces as the tasks progress. As the number
of classes increase with more tasks, it induces more confu-
sion in the model predictions, thereby reducing the confi-
dence value on the unlabeled data. To address this issue, we
propose a task-wise adaptive threshold instead of a fixed
threshold to effectively leverage the unlabeled data avail-
able at task t.

We denote a given unlabeled sample and its augmenta-
tion as xul

i , x̂ul
i , and their respective prediction probabilities

as puli , p̂uli . The unsupervised loss, that incorporates a task-
wise adaptive threshold is calculated as

Lus(x
ul
i ) = I(max(puli ) > �(t)

a ) · H(p̂uli , argmax(puli ))
(2)

Here, I is an indicator function which is 1 if the maximum
value of model output probability puli surpasses this adap-
tive threshold �(t)

a , otherwise, the loss is 0. The task-wise
adaptive threshold, �(t)

a is inspired from the inverse sigmoid
function [17, 40], and here we adapt it for the EFSS-CIL
task as follows:

�(t)
a =

↵

1 + e↵t
+ �, (3)

We observe that the dynamic threshold computed using
the above equation decreases as the task index t increases,

which aligns with the inverse sigmoid behavior. The
hyper-parameters ↵ and � provide flexibility in controlling
the rate of threshold reduction. This dynamic adjustment
ensures an effective utilization of unlabeled data in the
feature learning process, allowing the model to better adapt
to different tasks. In all our experiments, across all datasets,
we use ↵ = 0.5, � = 0.65. Further analyses of these
choices and dynamic threshold behavior plots across tasks
are provided in the supplementary material.

Class-aware weighted loss: While the task-wise adaptive
threshold helps to learn better feature representations from
unlabeled data across tasks, even within a task, there is
significant class imbalance among samples surpassing the
task-wise adaptive threshold. This imbalance can bias the
model training towards classes with more pseudo-labels,
hindering the performance on under-represented classes. To
mitigate this, inspired from the SSL works [15, 62], we
propose a very simple, yet effective class-aware weighted
cross-entropy loss.

At task t, after each epoch during stage 1, we calcu-
late the normalized histogram of confident unlabeled sam-
ples across different classes. This histogram, represented
as a vector ⇣ 2 R|C(t)|, serves as the basis for the class-
aware weighted distribution ⇣̄ used in the weighted cross-
entropy loss calculation. The class-aware weighted dis-
tribution ⇣̄ is calculated as ⇣̄ = 2 � ⇣, which ensures
that the class having maximum number of confident unla-
beled samples in histogram ⇣ has ⇣̄ = 1, and class with
least confident unlabeled samples has ⇣̄ = 2 (1  ⇣̄ 

Stage2 : Classifier Alignment Using both Labeled and Unlabeled Data

(iv). Class aware  weighted loss for stage1: 

Figure 4. After stage 1 training, we filter out under-confident samples and create the expanded label set D̃(t) = D(t)
l [ D̃(t)

ul . We
estimate class statistics for task t using this expanded label set. Utilizing class-wise statistics for all encountered classes, we fine-tune all
classifiers with the classifier alignment loss Lca, defined in Eq. 5. This comprehensive strategy which effectively utilizes the unlabeled
data, constitutes our third component (C3) in the proposed approach.

2). Essentially, this class-aware weighted distribution as-
signs higher weights to under-represented classes and lower
weights to well-represented ones. Using this distribution
⇣̄, we assign the weight wl

i = ⇣̄yl
i

for a labeled sample
pair (xl

i, y
l
i). Similarly, for an unlabeled sample xul

i , we
set wul

i = ⇣̄argmax(pul
i ) (wul

i is determined based on the
pseudo-label i.e., argmax(puli )). The total stage1 training
loss incorporating this class-aware information is calculated
as

Lstage1 = Ls(x
l
i, y

l
i) · w

l
i + Lus(x

ul
i ) · wul

i (4)

Fig. 3 illustrates the complete stage 1 training of TACLE,
which utilizes the task-wise adaptive threshold and class-
aware weighted loss to train the model for EFSS-CIL.

4.2. Stage 2: Classifier alignment using unlabeled

data

In pre-trained models, aligning classifiers with the un-
derlying class distributions plays a critical role in achiev-
ing optimal performance [63]. This classifier alignment
involves utilizing class means and variances, denoted as
{µ(t)

k ,⌃(t)
k }

|C(t)|
k=1 , calculated in the feature space of dimen-

sion d, where |C
(t)
| represents the number of classes in

task t. These class distribution parameters µ(t)
k 2 Rd and

⌃(t)
k 2 Rd⇥d are estimated from the available labeled data

D
(t)
l and stored, along with the old task class distributions

(µ(1:t�1)
k ,⌃(1:t�1)

k ). In stage 2 classifier alignment pro-
cess, all the class distributions (µ(1:t)

k ,⌃(1:t)
k ) from task 1

to t are utilized to align all the classifiers in the model.
For this purpose, a class-wise distribution is approximated
by a multi-dimensional Gaussian function N (µ(1:t)

k ,⌃(1:t)
k ),

from which features are sampled to align the classifiers
of both the current task and all the previous tasks’. The
classifier alignment loss is given by Lca(µ

(1:t)
k ,⌃(1:t)

k ) =

H( (1:t)(z), k), where z ⇠ N (µ(1:t)
k ,⌃(1:t)

k ) are samples
in the feature space from all the classes seen so far.

However, relying solely on labeled data might not accu-
rately capture the true class distributions due to the inherent
scarcity of labeled data in EFSS-CIL setting, specially if we
have as few as a single labeled sample per class. Towards
this goal, we propose to incorporate the confident unlabeled
samples to better estimate the class distribution parameters.
We show that this can further aid the classifier alignment
process, leading to improved performance.

We achieve this by constructing an expanded label
set, denoted by D̃

(t) = D
(t)
l [ D̃

(t)
ul . This combines

the original labeled data with pseudo-labeled data de-
rived from confident unlabeled samples given as D̃

(t)
ul =

{{xul
i , argmax (puli )} | xul

i 2 D
(t)
ul ,max (puli ) > �(t)a , i =

1 . . . N (t)
ul }. The improved statistics calculated using D̃

(t)

is denoted as {µ̃(t)
k , ⌃̃(t)

k }. This is further utilized for classi-
fier alignment in the stage 2 training loss function as given
below

Lstage2 = Lca(µ̃
(1:t)
k , ⌃̃(1:t)

k ) (5)

Fig. 4 illustrates the stage 2 training process. These two
stages are the same for each incremental task and these final
aligned classifiers are used for classification during infer-
ence. Due to space constraints, we summarize the detailed
TACLE training algorithm for the EFSS-CIL paradigm in
the Supplementary.

5. Experiments

Here, we discuss the datasets used, implementation de-
tails and experimental results of the proposed methodology.

5.1. Datasets

We evaluate our approach on three widely used SS-CIL
datasets, which we briefly describe below.

 

Stage 2: Classifier Alignment
C3. Exploiting unlabeled

data

Calculating class statistics Aligning classifiers

Experimental Results

Table 1. Average incremental accuracy on CIFAR10 after 5 tasks and CIFAR100 after 10 tasks for SS-CIL. The number in brackets
indicates the number of exemplars; our approach does not use any exemplars. Here, ?: models trained from scratch, †: models initialized
with MoCo v3 pretrained weights, and ‡: models initialized with ImageNet pretrained weights; RN18: ResNet18 architecture, FT: fixed
threshold, i.e. FixMatch.

Method Model
CIFAR 100 CIFAR 10

0.8% 5% 25% 0.8% 5% 25%

Fine Tuning RN18? 1.8 ± 0.2 5.0 ± 0.3 7.8 ± 0.1 13.6 ± 2.9 18.2 ± 0.4 19.2 ± 2.2
oEWC [33] 1.4 ± 0.1 4.7 ± 0.1 7.8 ± 0.4 13.7 ± 1.2 17.6 ± 1.2 19.1 ± 0.8
ER [45] (500)

RN18?

8.2 ± 0.1 13.7 ± 0.6 17.1 ± 0.7 36.3 ± 1.1 51.9 ± 4.5 60.9 ± 5.7
iCaRL [43] (500) 3.6 ± 0.1 11.3 ± 0.3 27.6 ± 0.4 24.7 ± 2.3 35.8 ± 3.2 51.4 ± 8.4
FOSTER [52] (500) 4.7 ± 0.6 14.1 ± 0.6 21.7 ± 0.7 43.3 ± 0.7 51.9 ± 1.3 57.1 ± 2.0
X-DER [5] (500) 8.9 ± 0.3 18.3 ± 0.5 23.9 ± 0.7 33.4 ± 1.2 48.2 ± 1.7 58.9 ± 1.5
PseudoER [32] (500)

RN18?

8.7 ± 0.4 11.4 ± 0.5 18.3 ± 0.2 50.5 ± 0.1 56.5 ± 0.6 57.0 ± 0.6
CCIC [6] (500) 11.5 ± 0.7 19.5 ± 0.2 20.3 ± 0.3 54.0 ± 0.2 63.3 ± 1.9 63.9 ± 2.6
PAWS [2] (500) 16.1 ± 0.4 21.2 ± 0.4 19.2 ± 0.4 51.8 ± 1.6 64.6 ± 0.6 65.9 ± 0.3
CSL [32] (500) 23.6 ± 0.3 26.2 ± 0.5 29.3 ± 0.3 64.5 ± 0.7 69.6 ± 0.5 70.0 ± 0.4
NNCSL [32] (500) 27.4 ± 0.5 31.4 ± 0.4 35.3 ± 0.3 73.2 ± 0.1 77.2 ± 0.2 77.3 ± 0.1
PseudoER [32] (5120) RN18? 15.1 ± 0.2 24.9 ± 0.5 30.1 ± 0.7 55.4 ± 0.5 70.0 ± 0.3 71.5 ± 0.2
CICC [6] (5120) 12.0 ± 0.3 29.5 ± 0.4 44.3 ± 0.1 55.2 ± 1.4 74.3 ± 1.7 84.7 ± 0.9
ORDisCo [53] (12500) - - - 41.7 ± 1.2 59.9 ± 1.4 67.6 ± 1.8
CSL [32] (5120) 23.7 ± 0.5 41.8 ± 0.4 50.3 ± 0.8 64.3 ± 0.7 73.1 ± 0.3 73.9 ± 0.1
NNCSL [32] (5120) 27.5 ± 0.7 46.0 ± 0.2 56.4 ± 0.5 73.7 ± 0.4 79.3 ± 0.3 81.0 ± 0.2
SLCA [63] (0)

ViTs†
66.43 ± 0.04 81.86 ± 0.02 86.95 ± 0.01 93.55 ± 0.03 94.45 ± 0.01 96.19 ± 0.01

SLCA+FT (0) 71.67 ± 0.09 83.96 ± 0.06 86.91 ± 0.02 94.07 ± 0.07 95.35 ± 0.05 96.08 ± 0.02
TACLE (ours) (0) 79.51 ± 0.08 85.58 ± 0.05 87.24 ± 0.02 94.59 ± 0.08 95.49 ± 0.05 96.02 ± 0.01
SLCA [63] (0)

ViTs‡
63.67 ± 0.03 91.38 ± 0.02 93.69 ± 0.01 91.64 ± 0.02 97.79 ± 0.01 98.56 ± 0.01

SLCA+FT (0) 88.23 ± 0.04 93.30 ± 0.03 94.08 ±0.01 98.45 ± 0.03 98.26 ± 0.02 98.89 ± 0.02
TACLE (ours) (0) 92.35 ± 0.06 93.59 ± 0.04 94.10 ± 0.02 98.61 ± 0.03 98.44 ± 0.03 98.86 ± 0.02

Table 2. Average incremental accuracy on CIFAR10 after 5 tasks and CIFAR100 after 10 tasks for SS-CIL. The number in brackets
indicates the number of exemplars; our approach does not use any exemplars. Here, ?: models trained from scratch, †: models initialized
with MoCo v3 pretrained weights, and ‡: models initialized with ImageNet pretrained weights; RN18: ResNet18 architecture, FT: fixed
threshold, i.e. FixMatch.

Method Model
CIFAR 100 CIFAR 10

0.8% 5% 25% 0.8% 5% 25%

Fine Tuning RN18? 1.8 ± 0.2 5.0 ± 0.3 7.8 ± 0.1 13.6 ± 2.9 18.2 ± 0.4 19.2 ± 2.2
oEWC 1.4 ± 0.1 4.7 ± 0.1 7.8 ± 0.4 13.7 ± 1.2 17.6 ± 1.2 19.1 ± 0.8
ER (500)

RN18?

8.2 ± 0.1 13.7 ± 0.6 17.1 ± 0.7 36.3 ± 1.1 51.9 ± 4.5 60.9 ± 5.7
iCaRL (500) 3.6 ± 0.1 11.3 ± 0.3 27.6 ± 0.4 24.7 ± 2.3 35.8 ± 3.2 51.4 ± 8.4
FOSTER (500) 4.7 ± 0.6 14.1 ± 0.6 21.7 ± 0.7 43.3 ± 0.7 51.9 ± 1.3 57.1 ± 2.0
X-DER (500) 8.9 ± 0.3 18.3 ± 0.5 23.9 ± 0.7 33.4 ± 1.2 48.2 ± 1.7 58.9 ± 1.5
PseudoER (500)

RN18?

8.7 ± 0.4 11.4 ± 0.5 18.3 ± 0.2 50.5 ± 0.1 56.5 ± 0.6 57.0 ± 0.6
CCIC (500) 11.5 ± 0.7 19.5 ± 0.2 20.3 ± 0.3 54.0 ± 0.2 63.3 ± 1.9 63.9 ± 2.6
PAWS (500) 16.1 ± 0.4 21.2 ± 0.4 19.2 ± 0.4 51.8 ± 1.6 64.6 ± 0.6 65.9 ± 0.3
CSL (500) 23.6 ± 0.3 26.2 ± 0.5 29.3 ± 0.3 64.5 ± 0.7 69.6 ± 0.5 70.0 ± 0.4
NNCSL (500) 27.4 ± 0.5 31.4 ± 0.4 35.3 ± 0.3 73.2 ± 0.1 77.2 ± 0.2 77.3 ± 0.1
PseudoER (5120) RN18? 15.1 ± 0.2 24.9 ± 0.5 30.1 ± 0.7 55.4 ± 0.5 70.0 ± 0.3 71.5 ± 0.2
CICC (5120) 12.0 ± 0.3 29.5 ± 0.4 44.3 ± 0.1 55.2 ± 1.4 74.3 ± 1.7 84.7 ± 0.9
ORDisCo (12500) - - - 41.7 ± 1.2 59.9 ± 1.4 67.6 ± 1.8
CSL (5120) 23.7 ± 0.5 41.8 ± 0.4 50.3 ± 0.8 64.3 ± 0.7 73.1 ± 0.3 73.9 ± 0.1
NNCSL (5120) 27.5 ± 0.7 46.0 ± 0.2 56.4 ± 0.5 73.7 ± 0.4 79.3 ± 0.3 81.0 ± 0.2
SLCA (0)

ViTs†
66.43 ± 0.04 81.86 ± 0.02 86.95 ± 0.01 93.55 ± 0.03 94.45 ± 0.01 96.19 ± 0.01

SLCA+FT (0) 71.67 ± 0.09 83.96 ± 0.06 86.91 ± 0.02 94.07 ± 0.07 95.35 ± 0.05 96.08 ± 0.02
TACLE (ours) (0) 79.51 ± 0.08 85.58 ± 0.05 87.24 ± 0.02 94.59 ± 0.08 95.49 ± 0.05 96.02 ± 0.01
SLCA (0)

ViTs‡
63.67 ± 0.03 91.38 ± 0.02 93.69 ± 0.01 91.64 ± 0.02 97.79 ± 0.01 98.56 ± 0.01

SLCA+FT (0) 88.23 ± 0.04 93.30 ± 0.03 94.08 ±0.01 98.45 ± 0.03 98.26 ± 0.02 98.89 ± 0.02
TACLE (ours) (0) 92.35 ± 0.06 93.59 ± 0.04 94.10 ± 0.02 98.61 ± 0.03 98.44 ± 0.03 98.86 ± 0.02

Table 3. Comparison of average incremental accuracy on
ImageNet-Subset100 after 20 tasks for SS-CIL. The number in
brackets: buffer size; ?: models trained from scratch and †: model
initialized with MoCo v3 pretrained weights.

Method Model ImageNet100-Subset
1% 5% 25%

Fine-tuning

ResNet18?

1.5 ± 0.2 2.7 ± 0.1 4.1 ± 0.2
ER [45] (5120) 12.2 ± 0.8 26.3 ± 0.7 38.8 ± 1.0
FOSTER [52] (5120) 14.8 ± 1.1 32.8 ± 0.7 42.1 ± 1.5
X-DER [5] (5120) 10.8 ± 1.1 27.4 ± 1.6 45.3 ± 1.0
CCIC [6] (5120) 13.5 ± 1.2 19.5 ± 0.7 25.9 ± 0.9
CSL [32] (5120) ResNet18? 26.8 ± 0.4 47.9 ± 0.2 56.3 ± 0.5
NNCSL [32] (5120) 29.7 ± 0.4 51.3 ± 0.1 65.6 ± 0.3
SLCA [63] (0)

ViTs†
78.30 ± 0.04 79.29 ± 0.02 82.39 ± 0.01

SLCA+Fixed Threshold (0) 79.72 ± 0.08 82.21 ± 0.05 83.08 ± 0.02
TACLE (ours) (0) 80.82 ± 0.09 82.42 ± 0.04 83.01 ± 0.02

Table 4. Comparison of average incremental accuracy on
ImageNet-Subset100 after 20 tasks for SS-CIL. The number in
brackets: buffer size; ?: models trained from scratch and †: model
initialized with MoCo v3 pretrained weights.

Method Model ImageNet100-Subset
1% 5% 25%

Fine-tuning

ResNet18?

1.5 ± 0.2 2.7 ± 0.1 4.1 ± 0.2
ER (5120) 12.2 ± 0.8 26.3 ± 0.7 38.8 ± 1.0
FOSTER (5120) 14.8 ± 1.1 32.8 ± 0.7 42.1 ± 1.5
X-DER (5120) 10.8 ± 1.1 27.4 ± 1.6 45.3 ± 1.0
CCIC (5120) 13.5 ± 1.2 19.5 ± 0.7 25.9 ± 0.9
CSL (5120) ResNet18? 26.8 ± 0.4 47.9 ± 0.2 56.3 ± 0.5
NNCSL (5120) 29.7 ± 0.4 51.3 ± 0.1 65.6 ± 0.3
SLCA (0)

ViTs†
78.30 ± 0.04 79.29 ± 0.02 82.39 ± 0.01

SLCA+Fixed Threshold (0) 79.72 ± 0.08 82.21 ± 0.05 83.08 ± 0.02
TACLE (ours) (0) 80.82 ± 0.09 82.42 ± 0.04 83.01 ± 0.02

geNet pre-training, it achieves a substantial 7% improve-
ment. As the percentage of labeled data increases to 5%,
TACLE maintains its effectiveness, showcasing a 1.04%
improvement over SLCA with MoCo pre-training and a
0.65% improvement with ImageNet pre-training.

On CIFAR100 dataset, using the MoCo pre-trained
model, TACLE achieves improvements of 13.08% and
3.72% over SLCA for 0.8% and 5% labeled data, respec-
tively. The ImageNet pre-trained model also demonstrates
significant gains, with improvements of 28.68% and 2.21%
for 0.8% and 5% labeled data, respectively. As the percent-
age of labeled data increases, the contribution of TACLE
or fixed threshold becomes less significant. In such cases,
using even a small proportion of incorrectly pseudo-labeled
unlabeled data may lead to a decrease in performance for
pre-trained models. This trend is evident in the results for
CIFAR-10 and CIFAR-100 with 25% labeled data. We con-
ducted additional experiments with FeCAM [24] and Flex-
Match [62] as alternative methods for a fair comparison, and
the results are provided in the supplementary material.

The complete results for ImageNet-Subset100 dataset is
reported in Table 4 along with all the comparisons. We ob-
serve that for this dataset, TACLE outperforms SLCA by
2.52% and 3.13% in the 1% and 5% labeled data settings,
respectively. The improvements are prominent for the diffi-
cult scenarios, when the percentage of labeled data is less.

Table 5. Ablation study on CIFAR100 dataset with 0.8% labeled
data. The average incremental accuracy is reported at the end of
10 tasks. The proposed components are denoted as C1: task-wise
dynamic threshold (Eq. 2), C2: class-aware CE loss (Eq. 4), C3:
exploiting unlabeled data in stage 2 (Eq. 5).

Method
Data Components Pre-trained

Labelled Unlabeled C1 C2 C3 ImageNet MoCo v3

SLCA 3 7 7 7 7 63.37 66.43
SLCA + Fixed Threshold 3 3 7 7 7 88.23 71.67

3 3 3 7 7 89.10 75.29
TACLE 3 3 3 3 7 91.32 77.19

3 3 3 3 3 92.35 79.51

6. Analysis and Ablation Studies

Here, we provide results of ablation studies and also
performance of TACLE in more challenging scenarios.

1. TACLE in Challenging Scenarios: To evaluate
the efficacy of the proposed TACLE in extreme settings,
we conducted experiments under two challenging SS-CIL
scenarios: one-shot EFSS-CIL and imbalanced EFSS-CIL.
(i) One-shot EFSS-CIL: In this scenario, each class has
only one labeled sample, while the remaining data remains
unlabeled. Experiments are carried out on CIFAR100
data with a 10-task configuration for one-shot EFSS-CIL.
Fig. 5a illustrates the task-wise cumulative accuracy and
average incremental accuracy for one-shot EFSS-CIL with
ImageNet as the pre-trained model, and Fig. 5b shows the
results with the MoCo pre-trained model. In both scenarios,
the TACLE framework demonstrates significant improve-
ments of 25.77% (ImageNet pre-trained) and 7.67%
(MoCo v3 pre-trained) over baseline SLCA. Table 6 shows
the one-shot EFSS-CIL results on ImageNet-Subset100.
(ii). Imbalanced SS-CIL: Since it is difficult to ensure
that the unlabeled data contains equal number of samples
from all classes, here, we consider the imbalanced scenario,
deviating from traditional SS-CIL where unlabeled data
is considered to be balanced. We introduce imbalance in
unlabeled data with an imbalance ratio between minimum
to maximum number of samples to be 0.01 (i.e. the
minority class has 5 samples and the majority class has 500
samples). We consider 0.8% labeled data on CIFAR100
with a 10-task setup. Figure 5c and Figure 5d present the
experimental results in these imbalance SS-CIL settings.
These outcomes showcase the effectiveness of the TACLE
framework in handling extreme EFSS-CIL scenarios.

2. Ablation Study: Here, we analyze the different
proposed components in the TACLE framework. Ta-
ble 5 shows the results on CIFAR100 with 0.8% labeled
data using different pre-trained models. The baseline
SLCA [63] utilizes only labeled data for stage 1 and
stage 2 classifier alignment. SLCA + Fixed Threshold
utilizes unlabeled data for training. Table 5 shows that
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brackets: buffer size; ?: models trained from scratch and †: model
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TACLE (ours) (0) 80.82 ± 0.09 82.42 ± 0.04 83.01 ± 0.02

Table 4. Comparison of average incremental accuracy on
ImageNet-Subset100 after 20 tasks for SS-CIL. The number in
brackets: buffer size; ?: models trained from scratch and †: model
initialized with MoCo v3 pretrained weights.

Method Model ImageNet100-Subset
1% 5% 25%

Fine-tuning

ResNet18?

1.5 ± 0.2 2.7 ± 0.1 4.1 ± 0.2
ER (5120) 12.2 ± 0.8 26.3 ± 0.7 38.8 ± 1.0
FOSTER (5120) 14.8 ± 1.1 32.8 ± 0.7 42.1 ± 1.5
X-DER (5120) 10.8 ± 1.1 27.4 ± 1.6 45.3 ± 1.0
CCIC (5120) 13.5 ± 1.2 19.5 ± 0.7 25.9 ± 0.9
CSL (5120) ResNet18? 26.8 ± 0.4 47.9 ± 0.2 56.3 ± 0.5
NNCSL (5120) 29.7 ± 0.4 51.3 ± 0.1 65.6 ± 0.3
SLCA (0)

ViTs†
78.30 ± 0.04 79.29 ± 0.02 82.39 ± 0.01

SLCA+Fixed Threshold (0) 79.72 ± 0.08 82.21 ± 0.05 83.08 ± 0.02
TACLE (ours) (0) 80.82 ± 0.09 82.42 ± 0.04 83.01 ± 0.02

geNet pre-training, it achieves a substantial 7% improve-
ment. As the percentage of labeled data increases to 5%,
TACLE maintains its effectiveness, showcasing a 1.04%
improvement over SLCA with MoCo pre-training and a
0.65% improvement with ImageNet pre-training.

On CIFAR100 dataset, using the MoCo pre-trained
model, TACLE achieves improvements of 13.08% and
3.72% over SLCA for 0.8% and 5% labeled data, respec-
tively. The ImageNet pre-trained model also demonstrates
significant gains, with improvements of 28.68% and 2.21%
for 0.8% and 5% labeled data, respectively. As the percent-
age of labeled data increases, the contribution of TACLE
or fixed threshold becomes less significant. In such cases,
using even a small proportion of incorrectly pseudo-labeled
unlabeled data may lead to a decrease in performance for
pre-trained models. This trend is evident in the results for
CIFAR-10 and CIFAR-100 with 25% labeled data. We con-
ducted additional experiments with FeCAM [24] and Flex-
Match [62] as alternative methods for a fair comparison, and
the results are provided in the supplementary material.

The complete results for ImageNet-Subset100 dataset is
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serve that for this dataset, TACLE outperforms SLCA by
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6. Analysis and Ablation Studies

Here, we provide results of ablation studies and also
performance of TACLE in more challenging scenarios.

1. TACLE in Challenging Scenarios: To evaluate
the efficacy of the proposed TACLE in extreme settings,
we conducted experiments under two challenging SS-CIL
scenarios: one-shot EFSS-CIL and imbalanced EFSS-CIL.
(i) One-shot EFSS-CIL: In this scenario, each class has
only one labeled sample, while the remaining data remains
unlabeled. Experiments are carried out on CIFAR100
data with a 10-task configuration for one-shot EFSS-CIL.
Fig. 5a illustrates the task-wise cumulative accuracy and
average incremental accuracy for one-shot EFSS-CIL with
ImageNet as the pre-trained model, and Fig. 5b shows the
results with the MoCo pre-trained model. In both scenarios,
the TACLE framework demonstrates significant improve-
ments of 25.77% (ImageNet pre-trained) and 7.67%
(MoCo v3 pre-trained) over baseline SLCA. Table 6 shows
the one-shot EFSS-CIL results on ImageNet-Subset100.
(ii). Imbalanced SS-CIL: Since it is difficult to ensure
that the unlabeled data contains equal number of samples
from all classes, here, we consider the imbalanced scenario,
deviating from traditional SS-CIL where unlabeled data
is considered to be balanced. We introduce imbalance in
unlabeled data with an imbalance ratio between minimum
to maximum number of samples to be 0.01 (i.e. the
minority class has 5 samples and the majority class has 500
samples). We consider 0.8% labeled data on CIFAR100
with a 10-task setup. Figure 5c and Figure 5d present the
experimental results in these imbalance SS-CIL settings.
These outcomes showcase the effectiveness of the TACLE
framework in handling extreme EFSS-CIL scenarios.

2. Ablation Study: Here, we analyze the different
proposed components in the TACLE framework. Ta-
ble 5 shows the results on CIFAR100 with 0.8% labeled
data using different pre-trained models. The baseline
SLCA [63] utilizes only labeled data for stage 1 and
stage 2 classifier alignment. SLCA + Fixed Threshold
utilizes unlabeled data for training. Table 5 shows that
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Figure 5. Analysis of one-shot SS-CIL and imbalance SS-CIL experiments. Experiments were conducted on CIFAR100 (0.8% labeled
data for imbalance scenerio) with 10 tasks, reporting top-1 cumulative accuracy at the end of each task and avg. incremental accuracy at the
end of each plot. Results are presented for both pre-trained models (†: MoCo v3 pretrained weights, and ‡: ImageNet pretrained weights).

6. Analysis and Ablation Studies

Here, we provide results of ablation studies and also
performance of TACLE in more challenging scenarios.

1. TACLE in Challenging Scenarios: To evaluate
the efficacy of the proposed TACLE in extreme settings,
we conducted experiments under two challenging SS-CIL
scenarios: one-shot EFSS-CIL and imbalanced EFSS-CIL.
(i) One-shot EFSS-CIL: In this scenario, each class has
only one labeled sample, while the remaining data remains
unlabeled. Experiments are carried out on CIFAR100
data with a 10-task configuration for one-shot EFSS-CIL.
Fig. 5a illustrates the task-wise cumulative accuracy and
average incremental accuracy for one-shot EFSS-CIL with
ImageNet as the pre-trained model, and Fig. 5b shows the
results with the MoCo pre-trained model. In both scenarios,
the TACLE framework demonstrates significant improve-
ments of 25.77% (ImageNet pre-trained) and 7.67%
(MoCo v3 pre-trained) over baseline SLCA. Table 4 shows
the one-shot EFSS-CIL results on ImageNet-Subset100.
(ii). Imbalanced SS-CIL: Since it is difficult to ensure
that the unlabeled data contains equal number of samples
from all classes, here, we consider the imbalanced scenario,
deviating from traditional SS-CIL where unlabeled data
is considered to be balanced. We introduce imbalance in
unlabeled data with an imbalance ratio between minimum
to maximum number of samples to be 0.01 (i.e. the
minority class has 5 samples and the majority class has 500
samples). We consider 0.8% labeled data on CIFAR100
with a 10-task setup. Figure 5c and Figure 5d present the
experimental results in these imbalance SS-CIL settings.
These outcomes showcase the effectiveness of the TACLE
framework in handling extreme EFSS-CIL scenarios.

2. Ablation Study: Here, we analyze the different
proposed components in the TACLE framework. Ta-
ble 3 shows the results on CIFAR100 with 0.8% labeled
data using different pre-trained models. The baseline
SLCA [63] utilizes only labeled data for stage 1 and
stage 2 classifier alignment. SLCA + Fixed Threshold

Table 4. One-shot SS-CIL on ImageNet-Subset100 for 20 tasks

Method Avg. inc. acc.

SLCA 59.48

SLCA + Fixed Threshold 61.32

TACLE (ours) 67.72

utilizes unlabeled data for training. Table 3 shows that
incorporating each proposed component of TACLE has
indeed improved the performance. We also studied the
impact of hyper-parameters (↵,�) on task-wise adaptive
thresholds and observed that results vary gracefully with
changes in these parameters. The results table is provided
in the supplementary material due to space constraints.
Discussion on limitations and future work: While
TACLE excels in leveraging unlabeled data from the cur-
rent task, it inherently assumes (as in the SS-CIL protocol)
that the unlabeled data comes solely from the current task,
whereas real-world scenarios may involve mixed data
sources, including samples from previous tasks or outliers.
Exploring these realistic settings is a future direction.

7. Conclusion

This paper introduces TACLE, an exemplar-free ap-
proach for SS-CIL. TACLE achieves state-of-the-art re-
sults on several benchmark datasets designed for SS-CIL
by leveraging pre-trained models without exemplars. The
proposed approach incorporates three key components to
effectively utilize unlabeled data: (i) Task-wise adaptive
threshold facilitating effective utilization of unlabeled data,
(ii) Class-aware weighted loss improving performance on
under-represented classes. (iii) Exploiting unlabeled data
for classifier alignment. TACLE demonstrates its effective-
ness not only under standard EFSS-CIL settings but also in
extreme scenarios like one-shot EFSS-CIL and imbalanced
EFSS-CIL. A comprehensive analysis conducted on various
datasets underscores the significant improvements achieved
by TACLE.
Acknowledgment This work is partly supported through
a research grant from SERB, Department of Science and
Technology, Govt. of India (SPF/2021/000118).

References:
1. Zhiqi Kang, Enrico Fini, Moin Nabi, Elisa Ricci, and Karteek Alahari. A soft nearest-neighbor framework for continual semi-
supervised learning. In ICCV, pages 11868–11877, 2023. 
2. Zhang, Gengwei, et al. "Slca: Slow learner with classifier alignment for continual learning on a pre-trained model. In ICCV, pages 
19148-19158, 2023.

Algorithm 1: TACLE for semi-supervised class incremental learning

Input: {⇥, } Model; {D
(1),D(2), . . . ,D(T )

} Data stream;

Es1  No. of epochs for stage 1; Es2  No. of epochs for stage 2;

for t 1 to T do

D
(t)
l = {xl

i, y
l
i}

N(t)
l

i=1 ;D(t)
ul = {xul

i }
N(t)

ul
i=1 ;

⇣  Uniform distribution across all classes

// #Stage 1: Feature Representation Learning //
for es1  1 to Es1 do

Bl = SampleMiniBatch(D(t)
l ); Bul = SampleMiniBatch(D(t)

ul );

B̂ul = ImageAugmentations(Bul);
Ol,Oul, Ôul = ⇥( (t)(Bl,Bul, B̂ul));
wl
 Assigning class-aware weights for labeled data Bl using ⇣̄;

wul
 Assigning class-aware weights for unlabeled data Bul using ⇣̄;

Lstage1  Ls(Bl) · wl + Lus(B̂ul) · wul; // Total loss for stage1

⇣  Update the histogram distribution using D
(t)
ul , �

(t)
a ;

⇣̄  (2� ⇣); // Normalization

{⇥, (t)
} Update model parameters using Lstage1;

//#Stage 2: Classifier Alignment//
D̃

(t)
 Expanded labelled data set using D

(t)
l ,D(t)

ul , �
(t)
a ;

µ̃(t)
k , ⌃̃(t)

k  Estimate mean and variance using D̃
(t); // where k 2 1, 2, ., |C(t)|

for es2  1 to Es2 do

Lstage2  Lca(µ̃
(1:t)
k , ⌃̃(1:t)

k ); // Alignment loss for classifiers

 (1:t)
 Update classifier parameters using Lstage2;

tal accuracy at the end of the task for both cases where two

different pre-trained models are used for model weight ini-

tialization. The proposed TACLE outperforms the baselines

by a significant margin in the both the scenarios.

4. Challenging Scenarios

4.1. One-shot EFSS-CIL

Fig. 3 depicts the performance of different methods in

the one-shot EF-SSCIL setting for the ImageNet-Subset100

dataset. In this setting, each class has only one labeled data

point along with unlabeled data, hence it is referred to as

the one-shot EF-SSCIL protocol. MoCo v3 pre-trained ViT

is used for weight initialization in these experiments. The

ImageNet-Subset 100 dataset is divided into 20 tasks, with

each task containing 5 classes. Therefore, the number of

labeled and unlabeled samples per task is 5 and 6500, re-

spectively. Our method (TACLE) achieves a 8.75% higher

accuracy compared to the SLCA method on this challenging

setting.

4.2. Imbalance EFSS-CIL

Fig. 4a illustrates the data distribution in the standard

SS-CIL setting, where the unlabeled data from every class

is balanced, meaning the number of samples from all classes

is equal in the unlabeled data (in the standard setting, they

have access to exemplars also but we are not showing for

simplicity). Conversely, Fig. 4b shows the data distribution

for the imbalance EFSS-CIL proposed in the paper. In this

scenario, we have a highly skewed distribution for the unla-

beled data, with an imbalance ratio of 0.01, indicating that

the ratio between the class with fewer samples and the class

with more samples is 0.01. At every task, unlabeled data

follows this imbalance (head-tail) distribution.

4.3. Training optimization details

During training, stage 1 for each task is trained for 10
epochs. A learning rate schedule is employed, reducing the

learning rate by a factor of 10 after the 8th epoch. To facil-

itate stable initial convergence, the network is first warmed

up for a few iterations using only labeled data loss. Subse-

quently, unlabeled data losses are incorporated and added

to the total loss function. The standard SGD optimizer

with a batch size of 128 is employed for both CIFAR-10

and CIFAR-100 experiments. Due to GPU memory limita-

tions, a reduced batch size of 64 is used for the ImageNet-

subset100 experiments.

Figure 5. t-SNE visualization of SLCA vs TACLE for given task id 1, 5, and 10. Each point represents image feature vector of dimension

768 (using ImageNet as pre-trained model).
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Why we need class incremental Learning?

• Data Collection of new classes.

• Data Unavailability of old classes.

• Computationally expensive to train model from scratch.

 c1: Task aware threshold


 c2: Class aware weightage


 c3: Unable data for stage2

Task-wise adaptive threshold facilitates effective utilization of unlabeled data, while class-aware weighted loss improves 
performance on under-represented classes.

Leveraging unlabeled data for better class statistics estimation, which further enhances classifier calibration.

https://github.com/rokmr/TACLE

